SGLang with DeepSeek R1 Deployment Guide
Introduction
This guide explains how to deploy SGLang with DeepSeek R1 model on TKE for efficient language model serving.
Prerequisites
Environment Requirements
- Kubernetes cluster with GPU support
- NVIDIA GPU drivers installed
- Sufficient GPU memory for model loading
Software Dependencies
- SGLang framework
- DeepSeek R1 model weights
- Python 3.8+ environment
Deployment Steps
1. Model Preparation
Download DeepSeek R1 model weights:
# Download model weights
wget https://example.com/deepseek-r1-weights.tar.gz
tar -xzf deepseek-r1-weights.tar.gz
2. SGLang Configuration
Create SGLang configuration file:
# sglang_config.py
import sglang as sgl
# Configure SGLang runtime
sgl.init(
model_path="/path/to/deepseek-r1",
gpu_memory_utilization=0.8,
max_num_seqs=64,
tensor_parallel_size=1
)
3. Kubernetes Deployment
Create deployment manifest:
apiVersion: apps/v1
kind: Deployment
metadata:
name: sglang-deepseek-r1
spec:
replicas: 2
selector:
matchLabels:
app: sglang-deepseek
template:
metadata:
labels:
app: sglang-deepseek
spec:
containers:
- name: sglang-server
image: sglang-deepseek-r1:latest
ports:
- containerPort: 8000
resources:
limits:
nvidia.com/gpu: 1
memory: 16Gi
cpu: 4
requests:
nvidia.com/gpu: 1
memory: 16Gi
cpu: 4
volumeMounts:
- name: model-weights
mountPath: /models
volumes:
- name: model-weights
persistentVolumeClaim:
claimName: deepseek-model-pvc
Service Configuration
Load Balancer Service
apiVersion: v1
kind: Service
metadata:
name: sglang-service
spec:
selector:
app: sglang-deepseek
ports:
- port: 80
targetPort: 8000
type: LoadBalancer
API Endpoints
/generate: Text generation endpoint/chat: Chat completion endpoint/health: Health check endpoint
Performance Optimization
GPU Memory Optimization
- Use model quantization
- Implement memory-efficient attention
- Configure appropriate batch sizes
Inference Optimization
- Enable KV cache optimization
- Use continuous batching
- Implement speculative decoding
Monitoring and Logging
Key Metrics
- Request latency
- Token generation speed
- GPU utilization
- Memory usage patterns
Logging Configuration
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
Troubleshooting
Common Issues
- GPU memory allocation failures
- Model loading errors
- Network connectivity issues
Debug Commands
# Check GPU status
nvidia-smi
# Check container logs
kubectl logs <pod-name>
# Verify service connectivity
curl http://sglang-service/health