Skip to main content

SGLang with DeepSeek R1 Deployment Guide

Introduction

This guide explains how to deploy SGLang with DeepSeek R1 model on TKE for efficient language model serving.

Prerequisites

Environment Requirements

  • Kubernetes cluster with GPU support
  • NVIDIA GPU drivers installed
  • Sufficient GPU memory for model loading

Software Dependencies

  • SGLang framework
  • DeepSeek R1 model weights
  • Python 3.8+ environment

Deployment Steps

1. Model Preparation

Download DeepSeek R1 model weights:

# Download model weights
wget https://example.com/deepseek-r1-weights.tar.gz
tar -xzf deepseek-r1-weights.tar.gz

2. SGLang Configuration

Create SGLang configuration file:

# sglang_config.py
import sglang as sgl

# Configure SGLang runtime
sgl.init(
model_path="/path/to/deepseek-r1",
gpu_memory_utilization=0.8,
max_num_seqs=64,
tensor_parallel_size=1
)

3. Kubernetes Deployment

Create deployment manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
name: sglang-deepseek-r1
spec:
replicas: 2
selector:
matchLabels:
app: sglang-deepseek
template:
metadata:
labels:
app: sglang-deepseek
spec:
containers:
- name: sglang-server
image: sglang-deepseek-r1:latest
ports:
- containerPort: 8000
resources:
limits:
nvidia.com/gpu: 1
memory: 16Gi
cpu: 4
requests:
nvidia.com/gpu: 1
memory: 16Gi
cpu: 4
volumeMounts:
- name: model-weights
mountPath: /models
volumes:
- name: model-weights
persistentVolumeClaim:
claimName: deepseek-model-pvc

Service Configuration

Load Balancer Service

apiVersion: v1
kind: Service
metadata:
name: sglang-service
spec:
selector:
app: sglang-deepseek
ports:
- port: 80
targetPort: 8000
type: LoadBalancer

API Endpoints

  • /generate: Text generation endpoint
  • /chat: Chat completion endpoint
  • /health: Health check endpoint

Performance Optimization

GPU Memory Optimization

  • Use model quantization
  • Implement memory-efficient attention
  • Configure appropriate batch sizes

Inference Optimization

  • Enable KV cache optimization
  • Use continuous batching
  • Implement speculative decoding

Monitoring and Logging

Key Metrics

  • Request latency
  • Token generation speed
  • GPU utilization
  • Memory usage patterns

Logging Configuration

import logging

logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

Troubleshooting

Common Issues

  • GPU memory allocation failures
  • Model loading errors
  • Network connectivity issues

Debug Commands

# Check GPU status
nvidia-smi

# Check container logs
kubectl logs <pod-name>

# Verify service connectivity
curl http://sglang-service/health